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Collaborations between partners
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Grenoble Rocade (E/W south ring)

� 10.5 km, 2ways-2lines, serving 90000 veh/day

� Daily Travelling Time variations: from 7-to-50 min

� In Grenoble > 50 % NOx-pollution due to tra�c
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Grenoble Rocade (E/W south ring)
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Sensor deployment
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Technical data
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Real-time data (17,Sept 17:00)
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Real-time data (17,Sept 17:00)
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Actuators ramp metering
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Actuators VSL panels
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Micro-simulator
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Collaborative software remote platform
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Challenges

1 Models
� Model validation using real-data

� Reduce model complexity

2 Tra�c forecasting
� Demand/velocity prediction

� Dealing with data and model uncertainty

3 Tra�c control

� Event-triggered/Distributed

� Modular

� Suitable for �eld-implementation

A. Ferrara, C. Canudas-de-Wit Tra�c control show case, ECC 2014



Achievements-Forecasting

Tra�c forecasting (TT-Prediction)

� Velocity-based method (extendable to FCD-sensors)

� Flow-based (counting) estimation

� Robust forecasting
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Achievements (highlights)

1 MPC-Numeric (UNIPV, DELFT, US, AQUILA, GENOVA)
� Distributed cost: reduction of computation time

� Event triggered & driven: act only when necessary

� Variable time-horizon: communication delays & data losses

2 Optimization with feedback structure(INRIA)
� Optimal balancing

� Distributed optimization via non-cooperative games

� Information exchange accounts for controllability proper ties
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Ramp metering

� Ramp metering is a control action based on
the use of tra�c lights at the on-ramps in
order to regulate the tra�c volumes enter-
ing the mainstream

� Ramp metering has been in use for some
decades

� It has been shown that with ramp meter-
ing it is possible to prevent congestion and
reduce the travel times of vehicles in the
freeway

� Di�erent control approaches have been
studied, from simple control laws to very
sophisticated control schemes
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Ramp metering: common control objectives

� Minimization of the Total Time Spent by the
drivers in the network (both in the mainstream
and at the on-ramps) [veh h]

� Maximization of the Total Traveled Distance by
the drivers in the network [veh km]

� Tracking of set-point values

� Other objectives (safety, emissions, and so on)
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Ramp metering control: MPC

� One of the most widely used freeway tra�c control approaches is
Model Predictive Control

� Advantages: prediction capability, optimality (suboptim ality), compli-
ance with the constraints

� Drawbacks: computational load and hence di�culty to be appl ied in
real time
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Our works based on MPC

1 To reduce the computational and communication load of the MP C
algorithms for freeway control, we have developed an event-triggered
MPC approach

2 In order to face speci�c events occurring in the freeway, we h ave pro-
posed an event-based MPC scheme (see Ferrara et al, SMC 2013)

3 To deal with very large scale freeway systems we have develop ed a
cluster-based distributed MPC scheme

� All the algorithms proposed during the
Hycon2 project have been tested in sim-
ulation both considering portions of the
Grenoble South Ring (Rocade sud) and
other European freeways

A. Ferrara, S. Sacone, S. Siri, Event-based control of freew ay systems, SMC 2013, IEEE

International Conference on Systems, Man, and Cybernetics , pp. 4122-4127, 2013
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CTM as prediction model

: : :: : :

Cell iCell i � 1 Cell i + 1
� i (h) � i + 1 (h)

si � 1 (h) si (h)

r i (h)

d i (h)

l i (h)

r i + 1 (h)

d i + 1 (h)

l i + 1 (h)

� i � 1 (h) � i (h) � i + 1 (h)

� � i (h) is the tra�c density of cell i [veh/km]
� li (h) is the queue length in the on-ramp of cell i [veh]
� � i (h) is the mainstream �ow entering cell i from cell i � 1 [veh/h]
� r i (h) is the �ow entering cell i from the on-ramp [veh/h]
� si (h) is the �ow exiting cell i through the o�-ramp [veh/h]
� d i (h) is the on-ramp demand referred to cell i [veh/h]
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CTM as prediction model
State equations :

� i (h + 1) = � i (h) +
T

L i

�
� i (h) + r i (h) � � i + 1 (h) � si (h)

�

li (h + 1) = li (h) + T
�
d i (h) � r i (h)

�

where si (h) = � i
1� � i

� i + 1 (h).

Merge model :

IF D i � 1 (h) + d i (h) +
li (h)

T
� Si (h)

THEN � i (h) = D i � 1 (h); r i (h) = d i (h) +
li (h)

T

ELSE � i (h) = mid

�
D i � 1 (h); Si (h) � d i (h) �

li (h)

T
; (1 � p i )Si (h)

�

r i (h) = mid

�
d i (h) +

li (h)

T
; Si (h) � D i � 1 (h); p i Si (h)

�

where the demand and the supply of cell i [veh/h] are given by D i (h) =
min

�
(1 � � i )v i � i (h); F i

	
and Si (h) = min

�
w i (�� i � � i (h)) ; F i

	
.

Model parameters : split ratio � i 2 [0; 1), free �ow speed v i [km/h], conges-
tion wave speed w i [km/h], capacity F i [veh/h], jam density �� i [veh/km],
on-ramp priority p i 2 [0; 1].
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CTM in MLD form

o Some equations of the CTM are nonlinear (min, mid functions)

o According to the framework of Mixed Logical Dynamical (MLD) sys-
tems, the nonlinear relations have been transformed into li near ones
by introducing some sets of auxiliary variables (both binar y and real)
and some sets of equalities and inequalities

o For instance

D i (h) = min
�

(1 � � i )v i � i (h); F i
	

i = 1; : : : ; N ; h = 0; : : : ; K � 1

can be written as

D i (h) = ( 1 � � i )v i z
d
i (h) + ( 1 � � d

i (h)) F i

(1 � � i )v i � i (h) � F i � D max
i (1 � � d

i (h))

(1 � � i )v i � i (h) � F i � � + ( D min
i � � )� d

i (h)

R min
i � d

i (h) � z d
i (h) � R max

i � d
i (h)

z d
i (h) � � i (h) � R max

i (1 � � d
i (h))

z d
i (h) � � i (h) � R min

i (1 � � d
i (h)) i = 1; : : : ; N ; h = 0; : : : ; K � 1

where � d
i (h), z d

i (h), i = 1; : : : ; N , h = 0; : : : ; K � 1, are respectively binary
and real auxiliary variables

Ü The CTM in MLD form has a mixed-integer linear structure
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The �nite horizon optimal control problem

Problem (Problem to be solved at time k over a
horizon of K p time steps)

Given:

- the initial conditions on the density and
the queue length � i (k ) and l i (k ),
i = 1; : : : ; N

- the demand of the cell before the �rst one
D 0 (h), h = k ; : : : ; k + K p � 1

- the supply of the cell after the last one
SN + 1 (h), h = k ; : : : ; k + K p � 1

- the on-ramp demands d i (h), i = 1; : : : ; N,
h = k ; : : : ; k + K p � 1

�nd the optimal control variables r i (h), i =
1; : : : ; N, h = k ; : : : ; k + K p � 1, minimizing the
adopted cost function J (k ) subject to the CTM in
MLD form and all the constraints that characterize
the physical problem.

Measure the state and estimate the demand

Solve the FHOCP

Find the control over the horizon

Apply the �rst control
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Adopted control objectives J (k )

� Minimization of TTS ! the
FHOCP is mixed-integer linear

� Minimization of quadratic devia-
tions of the state variables from
given set-points ! the FHOCP is
mixed-integer quadratic

� Minimization of cases in which the
state variables exceed given thresh-
old values ! the FHOCP is mixed-
integer linear

� Minimization of the number of con-
gested cells , properly weighted with
the on-ramp queue lengths ! the
FHOCP is mixed-integer linear

J (k ) = T

k + K p � 1X

h= k

NX

i = 1

L i � i (h) + l i (h)

J (k ) =
k + K p � 1X

h= k

NX

i = 1


 �
i ( � i (h)� � �

i )2 + 
 l
i ( l i (h)� l �i )2

J (k ) =

k + K p � 1X

h= k

NX

i = 1


 �
i ~� i (h) + 
 l

i l i (h)

J (k ) =

k + K p � 1X

h= k

NX

i = 1


 �
�
1 � � m

i (h)
�

+ 
 l l i (h)
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The event-triggered MPC scheme

� In the classical MPC scheme a
FHOCP is solved at each time
step

� In most cases this is redun-
dant, especially if slight varia-
tions have happened in the sys-
tem

� We propose an event-triggered
MPC scheme in which the con-
trol law is not updated at each
time step but whenever a prede-
�ned set of conditions is veri�ed

� This set of conditions is named
triggering rule

Measure the state and estimate the demand

Solve the FHOCP

Find the control over the horizon

Apply the control

Triggering rule?
YesNo
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The event-triggered MPC scheme

� At k = 0 the FHOCP is solved
determining r �

i (hj0), i = 1; : : : ; N ,
h = 0; : : : ; K p � 1 and r �

i (0j0) is
applied

� If at time step k > 0 the trig-
gering rule is not met , the avail-
able control sequence r �

i (k jkc ) is
applied, where kc is the time
step in which the FHOCP has
been solved for the last time (of
course it must be k � kc < K p )

� If at time step k > 0 the trig-
gering rule is met , the FHOCP
is solved determining r �

i (hjk ), i =
1; : : : ; N , h = k ; : : : ; k + K p � 1 and
r �

i (k jk ) is applied

Measure the state and estimate the demand

Solve the FHOCP

Find the control over the horizon

Apply the control

Triggering rule?
YesNo
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The triggering rule

� at each time step k , the set of cells for which there is a relevant
deviation of the real system behaviour from the predicted on e is created
according to the following logic

If � m
i (k ) 6= �̂ m

i (k jkc ) _ j � i (k ) � �̂ i (k jkc )j > � � _ j li (k ) � l̂i (k jkc )j > � l

then i 2 I (k )

where kc is the previous triggering time step, � � and � l are threshold
values

Triggering rule to be veri�ed at time k > 0

j I (k )j � � I _ k � kc � K p

where � I is a given threshold
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Simulation results

� 10 cells with 2 ramps, in the second and seventh cell

� One hour of simulation, i.e. K = 180 ( T = 20 [s])

� Objective function: minimization of cases in which the stat e variables
exceed given threshold values

� Parameters of the event-triggered MPC approach: � t
i = 95 [veh/km],

8i , 
 � = 
 l = 1, � � = 15 [veh/km], � l = 4 [veh] and � I = 4
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Simulation results

� In case the main aim of the tra�c control scheme is to minimize the
total time spent by the drivers , i.e. to maximize the total throughput,
the best choice for the density threshold values is the criti cal density
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Ramp 2
Ramp 7

The tra�c density [veh/km] and the queue
length [veh] (critical densities as threshold values)

Performance improvement � J = 43 %

TTS reduction � TTS = 7%

Computation ratio � = 0:15 (28 over
180)

Average time � av = 1:01 [s]

Maximum time � max = 1:61 [s]
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Simulation results

� For some speci�c reasons (safety) and for a given time period , the
objective can be to maintain a lower density
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Ramp 2
Ramp 7

The tra�c density [veh/km] and the queue
length [veh] (lower density threshold)

Performance improvement � J = 26 %

TTS reduction � TTS = 2%

Computation ratio � = 0:15 (28 over
180)

Average time � av = 0:73 [s]

Maximum time � max = 1:47 [s]
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Simulation results

� If the triggering rule is less strict (i.e. when � I increases), the index �
decreases, i.e. the number of computations of the FHOCP is st rongly
reduced

� The other indexes, regarding performances and computation al times,
does not change signi�cantly

� I � J � TTS � � av � max

1 0.45 0.07 0.52 0.55 2.32
3 0.43 0.07 0.15 1.01 1.61
5 0.40 0.06 0.11 1.32 1.78
7 0.41 0.06 0.10 2.01 2.51
9 0.39 0.06 0.10 1.14 2.26

� I = Triggering threshold
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The cluster-based distribution

o For large scale freeway systems
we propose a cluster-based dis-
tributed control scheme

o The freeway is divided into clus-
ters of cells
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The cluster-based distribution

o A cluster of cells is a subset of contiguous freeway cells which contains
a single actuator, i.e. a single tra�c light placed at the on- ramp

o The control variable associated with cluster s, s = 1; : : : ; Ns , is denoted
with us(k ) and corresponds to the on-ramp tra�c volume in the cluster

o The vector gathering all the state variables of cluster s, s = 1; : : : ; Ns ,
is denoted with x s (k ), and includes the tra�c densities of the cells of
the cluster and the queue length of the on-ramp

o Let N s indicate the set of adjacent clusters of cluster s (i.e. N s =
f s � 1; s + 1g)

            
Cluster s � 1 Cluster s Cluster s + 1

us� 1 (k ) us (k ) us+ 1 (k )

: : : : : :

State x s� 1 (k ) State x s (k ) State x s+ 1 (k )
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The cluster-based distributed MPC algorithms

o According to the classi�cation proposed by Scattolini (200 9), the two
proposed algorithms are partially connected and noniterative , i.e. each
local controller exchanges some information with adjacent clusters only
once within each sampling time

o The di�erence between Algorithm 1 ( independent ) and Algorithm 2
( cooperative ) is in the cost function

o These distributed algorithms have been compared with a decentralized
control approach , in which the control variables and the controlled ones
are gathered into disjoint sets

R. Scattolini, Architectures for distributed and hierarch ical Model Predictive Control: A review,

Journal of Process Control , vol. 19, 2009, pp 723-731
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Algorithm 1

o Algorithm 1 is a partially connected noniterative independent algorithm

o The local controller of cluster s solves its own optimization problem,
minimizing the local cost function Js (x s (k ); us (k )) with respect to the
sequence u �

s (k ); : : : ; u �
s (k + K p � 1) related to cluster s itself

o It uses the sequence u �
j (k ); : : : ; u �

j (k + K p � 1), j 2 N s , computed by
the local controllers of the connected clusters, to determi ne the actual
control sequence at time k :

us (k ) = � su �
s (k ) +

X

j 2N s

� j u �
j (k )

    
MPC

Js
�
x s (k ); us (k )

�

us� 1 (k ) us (k ) us+ 1 (k )

: : : : : :

State x s� 1 (k ) State x s (k ) State x s+ 1 (k )
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Algorithm 2

o Algorithm 2 is a partially connected noniterative cooperative algorithm

o The local controller of cluster s solves its own optimization problem,
minimizing the partial (nonlocal) cost function J I s (k ) with respect to
the sequence related to cluster s itself u �

s (k ); : : : ; u �
s (k + K p � 1), and

to the neighbors u � ; i
j (k ); : : : ; u � ; i

j (k + K p � 1), j 2 N s

o It uses the sequence u � ; j
s (k ); : : : ; u � ; j

s (k + K p � 1), j 2 N s , computed by
the local controllers of the connected clusters, to determi ne the actual
control sequence at sampling time k :

us (k ) = � su �
s (k ) +

X

j 2N s

� j u
� ; j
i (k )

    

    
MPC

Js
�
x s� 1 (k ); us� 1 (k ); x s (k ); us (k );

x s+ 1 (k ); us+ 1 (k )
�

us� 1 (k ) us (k ) us+ 1 (k )

: : : : : :

State x s� 1 (k ) State x s (k ) State x s+ 1 (k )
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The decentralized MPC scheme

o In the decentralized control approach the control variables and the
controlled ones are gathered into disjoint sets

o The local controller of cluster s solves its own optimization problem,
minimizing the local cost function Js (x s (k ); us (k )) with respect to the
sequence u �

s (k ); : : : ; u �
s (k + K p � 1) related to cluster s itself

o This sequence is the actual control sequence at time k

    
MPC

Js
�
x s (k ); us (k )

�

us� 1 (k ) us (k ) us+ 1 (k )

: : : : : :

State x s� 1 (k ) State x s (k ) State x s+ 1 (k )
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Simulated scenario

o We have implemented the proposed control schemes with the C ] pro-
gramming language and we have adopted the MIQP solver Cplex 1 2.5
to solve each FHOCP

o The simulation covers an horizon of K = 150 time steps (the sample
time has been set as T = 10 [s])

o 35 cells with 5 ramps (cells 3, 11, 18, 24, 30)

o 5 clusters: 1-6, 7-13, 14-20, 21-27, 28-35
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Simulation results

o The behaviour of the controlled system is quite similar for the 4 con-
sidered cases (centralized, distributed 1, distributed 2, decentralized)
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FHOCP characteristics

Control scheme Variables Constraints Average time [s]
Centralized 3636 8554 > 60

Decentralized-cluster 1 657 1556 0.14
Decentralized-cluster 2 756 1790 0.17
Decentralized-cluster 3 756 1790 0.21
Decentralized-cluster 4 756 1790 0.20
Decentralized-cluster 5 855 2024 0.55
Distributed 1-cluster 1 657 1556 0.14
Distributed 1-cluster 2 756 1790 0.17
Distributed 1-cluster 3 756 1790 0.21
Distributed 1-cluster 4 756 1790 0.20
Distributed 1-cluster 5 855 2024 0.55
Distributed 2-cluster 1 1377 3247 1.43
Distributed 2-cluster 2 2097 4938 2.55
Distributed 2-cluster 3 2196 5172 2.71
Distributed 2-cluster 4 2295 5406 3.01
Distributed 2-cluster 5 1575 3715 1.52

All the experimental tests have been realized with a 2.2 GHz I ntel(R) Core(TM) 2 Duo computer

with 2 GB RAM
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Comparative analysis
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Conclusions

� We have proposed and tested di�erent control algorithms wit h various
control objectives oriented to be applied to the real show ca se

� Future research will be devoted to couple the proposed algor ithms with
fast MPC techniques

� Future research will be also aimed at designing distributed state esti-
mation schemes (to keep the number of sensors on the freeway to the
minimum)

� At present we are also investigating the possibility of inte grating ramp
metering with Variable Speed Limits control
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Conclusions

Thanks for your attention!
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