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Hydrogen in petrol refineries

Hydrogen iIs used in modern
refineries in processes that
have two main purposes:
v'Increase the value of the
hydrocarbons (platformers,
hydrocraking, etc.)
v'Reduce the sulphur
content of the products,
(HDS),..
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Variable
hydrogen
demand
according to the
type and flow of
the hydrocarbon
to be treated

The excess
hydrogen is
partly recycled,
partly sent to
the fuel-gas FG
or CBP
networks to
prevent
accumulation of
Impurities



Networks

FG
CBP
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Burnt
Recycled

Consumer plants can
be supplied from
different networks
with different
purities: fresh
hydrogen or recycled
and some hydrogen is
release to the FG
network.

Constraints affect to
pressure and purity
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Hydrogen is an expensive product
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Network operation

Variable hydrogen
demands

No significant H,
accumulation in the
network

In order to guarantee that
enough hydrogen is
available to the HDS when
they need it, a surplus must
be maintained in the
collectors, the excess being
released by the pressure
controllers to the fuel-gas
network.
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v'The problem can be formulated as of balancing the
hydrogen that is being produced and consumed in the
refinery and distribute it through the existing pipeline
network in such a way that an economic target is
optimized, while satisfying a set of operational constraints.
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Optimal operation of the network

v Many possible economic targets:

— Minimizing the production of fresh H,,
maximizing the profits, minimizing the flow of H,
to the fuel gas network, maximizing the use of low
purity H,, etc.

v Main difficulties:

— Lack of reliable information about many streams
and compositions / Uncertainty of demands

— The large scale of the system / size and time scales
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Uncertainty

v" Variable hydrogen demands from the consumer units

v Volumetric flow measurements that must be compensated to
obtain massflows. Pressure, temperature and molecular weight
are required

v Hydrogen purity Is not always available. Moreover, the gas
stream contains impurities of unknown and changing
molecular weight.

v" Due to the low molecular weight (2) of hydrogen, a stream
with purity 90%, where one half of the impurities change
composition, for instance, from methane to propane, can
change the molecular weight of the stream in 41%.

v Compensated flows and purities are not always reliable.
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Approach

v" The large scale of the system imposes computational
barriers for a global dynamic solution of the problem

v HC changes that takes place every 2-3 days, Impose a
different approach at the times of change
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Decomposition

The network has
much faster
dynamics and can

B s and can
H o be considered static
o Fﬂ CCCCC E'FT in relation to the
meg el } slower producer
L= { and consumer units.

Centralized static
approach

v'Uncertainty has
been considered
by using data
reconciliation

v Additional
benefit:
Information, KPI
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Distribution network model

Mass balances at every node of the network, including those inside the units

/:'}m) il g

Fj [Nm3/h] Normalized volumetric

j,in i,out flows
H2 H2 it . .
X F, X J Fj XiH2 [% vol.] Purity of hydrogen in each
I,out j.in stream
MW:. [g/mol] Molecular weight of
sl 3 el j
Lk Z i Z GER each stream

I,out j,in

Each stream j is an ideal mixture of Hydrogen (MW"2 = 2 g/mol) and impurities
with a generic molecular weight MW;'

100MW; = MW 12X H2 1 (100 X T2 MW |



Peso Molecular (g/mol))
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Molecular weight vs H, purity
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Compensated flow measurements

Orifice plates provides measures of flows F, .4 at a certain design conditions:

e Pressure (P,), temperature (T,) and molecular weight (MW,)

To obtain the value of the flow F in other conditions, it is necessary to
compensate the measured flow by a factor () depending on:

 Pressure, temperature and molecular weight of operation (ope)

5= Ty +273 (Pope +1)MWj
(Py +1) MWope Tope +273

|:compensated = Freg X P where

=mm)p Pressure and temperature of operation are available in the process
for each stream

=)  Molecular weights of operation will be estimated with the model
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Data reconciliation

Minimizing the quadratic error between calculated and measured
data

caudales W ( / ) purezas W. ( )2
min J= F + it " (it 6 et
{F Xi PM;} ; Span O, ﬂ ' med ; SpaniO'i [ i med
ﬂ (P ) T +273 ( et +1)PMd |:l min — I:| = I:| ,max
(P, +1)PM, Tope +273 X <X, < x
F prm= F i i MW imp < MW imp < MW imp
i;e N,i j,e;tra N, j At eaCh nOdej i,min I,max
H2 L H2
X ;GFNJ fri j;raxi Fy.; The model includes other balances
PM Z A Z PM F, in the reactors and equilibrium in
isale  jentra ' separation units plus additional

equations for the membranes and
compressors as well as slack
variables for feasibility.

100PM, = PM "2 X,"* +(100—- X "*)PM,



The model can be reconfigured prior to the optimization
according to the operational state of the plant: Plants in
operation, use of collectors, ....
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Experimental results
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Data reconciliation

——  MODEL

Outputs and model

parameters

——>

.

Measurements

( Optimization J

L algorithm

v

Cycle until no gross
errors are detected

Reconciled
values

h 4

Check for gross errors




Gross error detection Sa

v" Gross errors can be detected by a combination of rule base, variance
and cyclic solution of the optimization problem.

v Bivariate error distribution Region with

£ross error
_(Xiz_xmi)2:| eXp|:_(Xi _Xmi)z ‘Ak

mz +p sz(Zi:)Z } +Zlogc —///// &—

exp{
min[-logL]= x,’!,',‘b',D,eZ (1-p)

error Measurement
error

v" Robust estimators

| & &
F=c ~—logl 1+~
c C

Fair function, Redescending, IR N A
tuning
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Optimal hydrogen management

Optimize an economic target:
min ‘Jopt o Z ppro |:prox pro Z pfuel |:fuel X fuel 1 Z pk |:k
i j k

{F X}
Producers Fuel-gas Compressors
» Satisfying the model
 Under constraints imposed by the
process operation (ranges, H,/HC, . ‘_
compressors capacity and maximum maken_ I ‘”‘ e R
Lty ) i — .
» And with additional constraints that cxiez” -] e
guarantees that the operation of the ‘

reactors is not affected (hydrogen
consumption, impurities generation +
load ratio). Other internal flows may Starting point: o

product

change reconciled values



The problem has been
enlarged to include reaction
to hydrogen shortages that
can take place due to several
reasons (breakdown of
equipment, failures in the
platformer plants, etc.)

Two new variables are added by

consumer plant: Fro
R ——
0 <S¢ < 1 load reduction factor —_—
aHC

y; (0,1) indicates if a plant is
working or not

HDS

Sa&

Some plants
must reduce
their
hydrocarbon
load or be
stopped
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Hydrogen shortages

{F.XiaVyi}

min - Jo, = Z PoroFpro X pro _Z P tuet Fruet X el +Z P Fi +Z(1—a| w,
| J k |

Same model and constraints as w, weihgts reflecting priorities
before except:
0<o;<1 Range of opgra_ltion

between a minimum and
s e S a maximum capacity
HC ..y; SHC,a; <HC .Y, £
Fioi 21 HC; a; HDS

—)

Mix integer problem MINLP aHC



Process Simulation
(EcosimPro)

i

Sequential NLP (SQP-NAG)
‘

!
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Two solutions

Simultaneous NLP
(GAMS)

Process (PI)

922 variables from 220 streams,
14 reactors, membranes,
separators,.. Slack variables
included to obtain feasible
solutions totalling 1667 variables
In 1631 equality and inequality
equations

166 process measurements
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Optimization methods
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and process optimization




User ¢ HMI (Excel)
4 |scapa
Data treatment
f/‘\ Q
[ [T
GAMS Dataand
results

To deal with big changes, the network is
formulated as a superstructure that allows
to remove groups of equations depending
on the value of binary variables that
represent the state of the plants.
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Decision Support System

Key role played by the data
treatment in the success of the
application in the refinery. If
data from the SCADA system
are not analyzed and filter
previously to their use in the
numerical methods, there are
no chances to obtain good
results

This layer is composed of a
set of rules that detect faults
and information
Inconsistences In the raw
data and decides which
options are the most
adeguate ones
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Typical results

15 out of 16 plants were in operation
numbersin %  H4 cheaper than H3

! n'.Eh M 2k O'o :
SR reconciliztion | reduction He pULILY
distribution

H2 11.28 19.12 15,2867 I

Hd 2502 2295 27132 = nge

F1 13.32 12,32 0 Qa0 T2 B0

P2 2912 29.12 0.0 =N
Total Q5,33 100.00 S BT
Fi5 2656 2415 22.491

A reduction of about 3.7% over total use, or 7% over total fresh
hydrogen production (H3 plus H4) and 28.5% of gases sent to the fuel
gas network can be obtained by better management



Optimal redistribution after adrop 3S&
In P1 production of 55.6%.

H3 reached its upper limit but

H4 decreased production due
to the network structure bl el e TS
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Implementation

v" Basic control helps matching model hypothesis
and the actual process: steady state / mismatch

Fue %—SO:G it Maintaining steady
Hydrogen mla-::ivaor:gt-]ép - o : ‘I_}Ul'lt}' State balances Wlth
make-up_y ‘ o{ emirane | —» PUrEE pressure control
s | e s loops
C-H2 COMPressor | E ;,,_* ,_’ FuSIaéas
CBP N S Unbalances are
Fiyifoce roon v i moved to the CBP
__ _____ @ Reactor | COI IeCtor
S H, purity control
High pressure separator I,_. Treated IOOpS malntaln the

product Impurities balance



Implementation
""""""" 0 e :
KO‘ i il 44 i E R &;- —.
- 1 * ----- @.H 20
: [e

This will affect all plants

Different from self-optimizing control: RTO is applied
on line, basic control helps reducing mismatches

Sa&

Collectors
pressure control
maintain global
balances

Mismatch process-
model is corrected
with VPCs that
minimize global
losses to FG

The optimizer
fixes the best
distribution
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Dynamic plant operation
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Conclusions

v" An approach has been presented to optimally manage the hydrogen network
of a petrol refinery

v" Data reconciliation and optimal hydrogen distribution problems are now
under evaluation in the plant.

v" The system Is able to reduce utility cost by increasing hydrogen recovery in
consumer units and reducing the overall production of H2 in the hydrogen
suppliers

v" Implementation plays an important role
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